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Towards HPC++: A Unified Approach to
Parallel Programming in C++

Final Report for Contract Number:
DABT63-95-C-0108

Principle Investigator
Carl Kesselman

1 Introduction

This Document is the final report for the Caltech subcontract Number PC
246143 under contract DABT63-95-C-0108, titled: Towards HPC++: A Unified
Aproach to Parallel Programming in C++. In this report we describe the goals
of the reasearch and summarize the major accomplishments.

1.1 Executive Summary

Compositional C++, or CC++, is a general purpose parallel programming
language designed to support a wide range of parallel programming styles. By
adding six new keywords to C++, CC++ enables a programmer to express many
different types of parallelism. CC++ is designed to be a natural extension to
C++, appropriate for parallelizing the range of applications that one would write
in C++. C++ supports the integration of different parallel programming styles in
a single application. It was designed to provide efficient execution on a range of
parallel computing platforms, including both shared and distributed memory
computers. .

The main result of the project described in this report was to develop the
technology required to implement CC++ and to produce a robust implementa-
ion of a CC++ compiler and the associated runtime systems needed to execute
CC++ programs on a range of parallel and distributed computing environments,
including workstations, shared memory and distributed memory parallel
computers, and heterogenous networked collections of these machines.



In addition to developing CC++ compilation technology, this project has
developed general tools that support the development of source to source trans-
formations of programs. These tools have been used to support a range of
other C++ research projects, for example at Indiana University, University of
Oregon and Los Alamos National Laboratory.

One of the significant developments that occurred during this project was the
emergence of Computational Grids as a next generation computing environment.
The CC++ project has tracked this progress by basing its runtime system on
the Globus Grid toolkit, enabling wide area execution of CC++ programs in a
heterogenous environment. ’

1.2 Structure of the Rest of This Report

In the first half of this report, we focus on the CC++ language and how it is
used to solve a range of parallel programming problems. We describe the design
philosophy for the CC++language. We then demonstrate how CC++ can be
used to solve a simple parallel programming problem: polygon overlay. In the
second half of the report, we focus on implementation technology, describing
the structure of the CC++ compilation environment, the design of SAGE-II,
a source-to-source transformation tool for C++ programs and the design of a
runtime library for CC++.

2 Design Philosophy and Goals of CC++

CC++ is the result of a'desire to make research iQ.po'mpositiona‘Ll parallel systems
available to a wider range users than were reached with previous compositional
parallel programming systems such as PCN [CT91]. Briefly stated, a compo-
sitional parallel system is one in which all properties of program elements are
preserved when those elements execute in parallel. We will discuss composition-
ality in more detail shortly.

Our previous work in compositional systems was based on designing new
programming languages. While starting with a clean slate has its advantages,
it throws up a significant barrier to getting many people to use the resulting
system, no matter how clean and elegant. Based on this experience, CC++
adds essential elements of compositional programming systems into a widely-
used language. C++ was chosen as a starting point because of its widespread
use and its support for library construction, code re-use and programming in
the large.

2.1 CC++ and Java

During the later stages of this project, the Java programming language has
gained increased popularity. In many ways, Java is like a simplified C++, with
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many of the more complex features, such as multiple inheritance and opera-
tor overloading, eliminated. In addition, Java provides an automatic garbage
collection mechanism, which CC++ does not have. )

While we considered the impact of Java on this project, we decided to con-
tinue our planned development path with CC++. Our reasons for this included:

e The performance of Java programs is still significantly poorer then the
performance of C++ programs

——

¢ The Java Virtual machine does not run on all of the parallel architectures .
that were of interest to our research.

e Many libraries and applications of interest are implemented in C++, and
not Java.

Finally, we note that while Java provides some limited support for parallel
programming, including support for multithreaded programs, and a remote pro-
cedure call library (RMI), this support is quite limited and does not have many
of the semantic and performance advantages of the extensions that make up
CC++. We believe that many of the the results for this project’can be directly
applied to both the Java language and its implementation.

2.2 Compositionality and CC++

One of the reasons that writing parallel programs is harder than writing sequen-
tial programs is that it is difficult to reason about the behavior of a program in
terms of the behavior of the pieces from which the program is constructed. A
parallel programming system is said to be compositional if properties that hold
for a part of a program in isolation still hold when that part of the program
executes in parallel with any other piece of code.

To achieve compositionality, we must restrict the ways in which one compo-
nent of a parallel composition can access data in another component. Conse-
quently, parallel programming languages often limit the types of parallel compu-
tations that can be expressed. For example, one common approach is to limit a
parallel programs to follow a data-flow computational model [BOCF92, Ack82,
Gri93), requiring all shared variables to have the single assignment property,
and a statement in the language cannot execute until all of its input variables
have been given a value. In this model, all operations on data occur locally and
atomically.

The advantage of these approaches is that they guarantee compositionality.
However, there are drawbacks to enforcing a compositional computational model
in the design of a parallel programming language:

e There are many different models for compositional programming. Re-
stricting a program to just one of these can make implementation more
complex if the application does not map well into the model being used.



¢ In some situations, non-compositional algorithms can yield better perfor-
mance than that of their compositional counterparts.

o The pointer-based memory model of C++ can make'it difficult to enforce
the compositional model, or to support all of C++-.

For these reasons, CC++ takes a less strict approach to compositional par-
allel programming. There are no restrictions on how a variable can be ac-
cessed within a parallel operation meaning that programs written in CE€++,
can have non-deterministic behavior. Rather than providing compositionality .
via a specific language-enforced mechanism, CC++ supports a wide range of
compositional programming styles though language features and an approach
to program design called the proper interface approach. The proper interface
approach focuses on the properties that an interface between program compo-
nents must have in order to ensure compositionality. The objective is to specify
a software component clearly in terms of standard interfaces with clearly defined
inputs and outputs. Features of CC++ such as interleaving semantics, explicit
parallel blocks with known termination points, processor object encapsulation
and synchronization variables facilitate the use of this approach.-Specifics on the
design of proper interfaces and the compositional approach to parallel program-
ming can be found in [CK92]. [Siv94] and [Bin93] show how the compositional
aspects of CC++ are used to prove properties of parallel programs.

2.2.1 CC++ extends C++

CC++ is a strict’ superset of C++. Any corregt C++ program is also a correct
CC++ program. However, this alone does not gitirantee that CC++ “feels” like
C++. One way we can ensure that CC++ makes sense to a C++ programmer
is to apply the design philosophy of C++ to the design of CC++. Paraphrasmg
the designer of C++ [ES90], an important aspect of C++ design is to have
the language consist of a set of basic features that can be combined to achieve
solutions that would otherwise have required extra, separate features. C++
is designed to support a wide range of different programming styles, without
forcing any particular programming style on the user.

In parallel programs, as in sequential programs, there are many different
programming approaches, or paradigms. Some of the more common of these are
data parallelism, task parallelism, object parallelism, and functional parallelism.
Finer classifications are possible as well. For example, task parallelism can be
built on shared memory programming primitives (such as locks, monitors and
semaphores) or on message passing. In turn, message passing can be point-to-
point or channel-based, and be either synchronous or asynchronous.

While it is convenient to speak of task or data parallel programs, there is no
reason to restrict a program to a single programming paradigm. As the range
of problems solved on parallel computers increases, it becomes desirable to con-
struct multi-paradigm programs. In their simplest form, these programs combine



task and data parallelism. It has been demonstrated that such a combination
can result in performance superior to single-paradigm programs [FBACX94].
We anticipate more general forms of multi-paradigm programs to prove impor-
tant as well.

Consequently, CC++ does not provide specialized language constructs to
implement a specific parallel programming model. Rather, it consists of a small
number of constructs that when combined with C++ constructs allow us to
implement a range of parallel programming paradigms. Parallel construets in
CC++ work in conjunction with the constructs in C++ to provide a basic set of
mechanisms from which a wide range of paradigms can be constructed. Given
an appropriate set of constructs, specific parallel programming paradigms can
be implemented in the language as paradigm libraries.

The advantage of this approach is flexibility. Parallel programming paradigms
can be specialized for the requirements of specific applications. Furthermore,
by combining paradigm libraries, it is straightforward to integrate multiple pro-
gramming paradigms within a single application. The overall result is that the
complexity of parallel program development can be reduced.

2.3 Other Language Design Considerations

A desire to support compositional programming and parallel paradigm libraries,
and to be consistent with the design philosophy of C++, all had an impact on
the design of CC++-. Some other concerns are:

Execution environment: CC++ programs should be able to exploit both
shared and distributed memory parallel temputers. The abstractions in
CC++ should make it possible to port a program from one parallel archi-
tecture to another without recoding. On the other hand, CC++ also make
it possible to exploit the characteristics of particular parallel computers
without having to step outside the language.

Ease of learning: CC++ should be easy for a C++ programmer to learn.
Our goal was to make it possible for a C++ programmer learn all of
CC++ in half an hour. Learning CC++ is simplified by making most
CC++ constructs explainable as generalizations of existing C++ concepts.
Furthermore, all CC++ constructs have syntactic analogs in pure C++.

Migration path: CC++ should provide a migration path from an existing
sequential application to a parallel application. This means that that all
of C++ has to be included in CC++, including pointer operations and
static and global variables. It also means that we must provide a way
to encapsulate existing code in a parallel environment without change,
and a way to introduce concurrency at arbitrary points in the program.
Finally, it means that paralielism must not be tied to any specific language
construct such as an object. Not all C++4 programs are written in the



object-oriented style—if concurrency is tied to operations such as member
function call, then the application must be rewritten in order to make it
parallel.

Support for heterogeneity: We anticipate that parallel programs written in
C++ will use several parallel programming styles. In addition, we expect
parallel systems to be composed of different types of modules running on
different types of machines. For example, an application might wish to
run its visualization component on a shared-memory workstation While
its computing component runs on a multicomputer. The abstractions -
provided by CC++ should support this type of heterogeneity.

Safety and efficiency: Finally, in designing CC++, it is important to keep on
fact in mind: C++ is not perfect. The language has many safety features,
but provides users with ways to sidestep them in order to make code more
efficient or to simplify an implementation. For example, a pointer to a base
class can be explicitly cast to a pointer to a derived class, even if the object
being pointed to is not an instance of the derived class. Similarly, CC++
allows the explicit cast of a global pointer (discussed in Section 3.5.3) to
a local pointer.

3 Summary of the CC++4 Language

CC++ adds six new keywords to C++: the parallel composition operators
par, parfor, and spawn, the synchronization constructs atomic and sync, and
global, which is used to control of distribution¥nd locality.

3.1 Parallel Composition Operators

CC++ programs are explicitly parallel. Parallel execution is specified by using
parallel blocks (par), parallel loops (parfor), and spawned functions (spawn).
The syntax of these statements is summarized in Program 3.1.

The execution semantics of parallel execution in CC++ is defined to be fair
interleaving, which can informally be described in the following way. Consider
the parallel block:

par {
statementl ;
statement2;
statement3;

}

in which each statement consists of a sequence of basic operations (i.e., assem-
bly language instructions). Under fair interleaving, the operations of any one
statement must execute in sequence. However, basic operations of two or more
statements can be intermingled. Further, this interleaving must be such that
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operations from each statement will execute eventually. For example, operations
in statement2 and statement8 must eventually execute, even if statement! is:

while (1){
foo();

}

// parallel block }
par { -—
statement 1; :

statement n;

}

// parallel loop
parfor (int i=0 ; i<n; i++)
statement

// spawned function
spawn f(argl, ---, argn); -

Program 3.1: Parallel Control Structures in CC++

The most basic parallel construct is the parallel block or par block. Its syn-
tax is modeled after that of the try block. The statements in the parallel block
execute in parallel, using fair interleaving. The closing brace of the par block is
a sequence point, as is the closing brace of a normal compound statement. This
means that the statement after the par block d6¥s not execute until after all of
the statements within the par block terminate. )

The statements in a parallel block can be any C++ constructs’except for
variable declarations, gotos, or returns. Parallel blocks can contain normal
compound blocks as well as nested parallel blocks. For example, the following
is legal CC++:

par {

a();

b();

par {
cQ);
x =1;
y =%

h();



z = g(x+23);

}

There are no special rules on how variables can be accessed within a par
block; all statement shares the same address space. This can obviously cause
problems if care is not taken. In particular, the example above suffers from a
race condition on the variable x. Other CC++ constructs must therefore be
used to ensure that y has a sensible value.

A parallel block only specifies when statements can execute, not where they
execute. In general, the statements in a parallel block, as well as the other -
parallel control structures in CC++, will execute at the same location. This
implies that a new thread of control may have to be created to execute each

‘statement in a par block. If the parallel block is running on a shared-memory

computer, fair interleaving allows each statement to be executed on a differ-
ent processor to achieve speedup. On distributed-memory computers, parallel
control structures are combined with constructs that control locality to obtain
speedups (Section 3.5).

Parallel iteration in CC-++ is provided by the parfor statement. During
execution of a parfor, each instance of the loop body is execiited in parallel.
The initialization, update and test parts of the parfor statement are evaluated
sequentially, just as in a for statement, so that the execution of a parfor
proceeds as follows:

1. Execute the initialization part of the statement

2. If the test is tl’lilel,-. start the parallel execution of the ldop body. If it is
false, wait for all instances of the loop bod¥ to terminate.

3. Execute the update expression, then go to Step 2. >

The semantics of the parfor statement is a result of the fact that C++
places no limitations on what can appear in the update, test and body of a for
statement. Consequently, we can write:

parfor (list * ptr = head; ptr ; ptr = ptr->next)
ptr->doit();

which iterates over a list and performs the operation doit () on each list element
in parallel.

A consequence of the parallel execution of the loop body is that the value
of the variables being used to control the iteration may have changed by the
time the loop body corresponding to that iteration has a chance to execute.
To resolve this problem, each loop iteration is provided with a local copy of all
variables that are declared in the initialization part of the parfor statement.
To avoid potential errors caused by changing the value of a loop index with the
expectation that the value will propagate to another iteration, these copies are
made constant:



parfor (int i=0; i<N ; i++){
doit(i); // reference local copy of i
i++; // compilation error

}

Because the other loop constructs in C++ do not allow for local variable dec-
larations, CC++ includes only a parallel for loop. '

par and parfor introduce parallelism in a structured manner: ‘the statement
after par or parfor does not execute until all of the statements executed byTese
constructs have terminated. The spawn statement provides an unstructured .
alternative: it causes the specified function to execute in parallel with the rest
of the program and then terminates. Termination of the spawn statement does
not imply completion of the function being spawned. The statement after a
spawn statement executes without regard to the status of the spawned function.

The execution of the spawn statement is similar to that of a regular function
call. First, the function expression and argument expressions are evaluated in an
arbitrary order. The evaluation of the argument expressions is used to initialize
the formal arguments of the function. At this point in the execution of a normal
function call, the function body would start to execute. However, in the spawn
statement, the next statement in the program starts executing as soon as the
arguments to the function are copied. The ekecution of the function body is
interleaved with that of the rest of the program. Any return value from the
spawned function is discarded.

The unstructured nature of the spawn imposes some additional responsibil-

ities on the programmer. Consider the following example:

{ T~
int x;
spavn £(x); // OK, z copied before spawn terminates ™
spawn g(&x); // error: x can go out of scope

}

The spawned functions reference a variable that can go out of scope before either
function has a chance to execute. This is not a problem in the case of £(x), as
the value of x is copied before it goes out of scope. The call to g(&x), however,
is dangerous, in that the pointer passed in as an argument does not necessarily
refer to x when the function body executes. Note that an analogous problem
can exist in a pure C+4 when a pointer to a local variable is assigned to a
dynamically-allocated pointer.

3.2 Synchronization Variables
Consider the following parallel code:

int x, y;

par {
x=1;, y=x+1;



}

Because of the interleaving that occurs in the parallel block, there have no way
of knowing what the value of y will be. We therefore need some way to control
how the operations in a CC++ program are interleaved. Synchronization, or
sync, variables are one of two mechanisms provided in CC++ for this purpose,
atomic functions being the other.

A sync variable is a single-assignment variable [Ack82]: it can be assigned
a value at most once, and its value cannot be used until the assignment has
taken place. Another way to view this is that a sync variable is just like a -
const variable with delayed initialization. Any attempt to use the value of a
sync variable prior to initialization will cause the reading thread to block until
some time after the variable has been initialized. Once the variable has been
initialized, it behaves just as if it had been declared const. In fact the syntax
for declaring a sync variable is identical to that of a const variable.

Several examples of sync variable declarations are shown in Program 3.2.
The first line in this example shows the normal C++ declaration for a constant
integer. The declaration of a sync variable on the next line is similar. A sync
variable can exist for any type that can be declared const; for example, the third
declaration is for a sync pointer to an integer. In this case, we can synchronize
on the existence of the pointer, but not on the object being pointed to.

The use of a sync variable is shown in the function £(). Note that the
argument to £() is a reference to a sync integer. Since we are not asking for
the value of the sync integer, calling the function £ () will not block. Looking at
the function body, the parallel block it contains allows the statements to execute
in any order. However, because of the sync deelarations, the statement that
sets the value of sync_x must execute before the statement that uses sync_x.
Because the third statement in the parallel block attempts to update the value
of a sync variable, it is an error.! While this particular error can be detected at
compile time, in the general case, such errors cannot be detected until runtime.

const int x = 23; // constant integer
sync int sync_x; // sync integer
int * sync iPtr; // sync pointer to an integer

void f(sync int & sync_int){

int y, z;

par {
// waits for assignment to sync'int
y = sync_int + 1;
// initialize the value of the sync variable
sync.int = 23;
// compilation error
Z = SYnc.Xx ++;

1The ++.operator must read before it can write.
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Program 3.2: Examples of sync Variables

3.3 Atomic Functions

Sometimes it is necessary to prevent certain interleavings from occurring within
a parallel execution. In CC+-+-, this can be achieved by performing the actions
within the body of an atomic function. An atomic function is declared by
adding the specifier atomic to the function’s declaration:

class Queue {
atomic void insert_into_queue(T);

}

Within an instance of a C++ class, only one atomic function may execute at
a time. Regular C-style functions and static member functions can be declared
atomic as well, providing atomicity within an instance of a processor object
(Section 3.5). )

The execution of an atomic function may be interleaved with the execution
of atomic functions in other classes, with atomic functions in other instances of
the same class or with non-atomic functions in the same instance of the class. In
addition, an atomic function can directly call another atomic function within

the same object without blocking.

An alternative to atomic functions would be to sequentialize access to an
object and only allow a one member function a a time to execute within an
instance of a class. This method has the advantage that one does not have to
be concerned with the potential interactions between member functions. One
reason we choose not to take this approach is that it limits ways in which C++
classes can be used in parallel applications. Consider the following example:

class profiled_foo {
foomember() { counter++; big_function(); }
const counter_value() { return counter; }
private:
int counter;

b

In this situation, there is no reason why access to the counter should be re-
stricted while big function is executing. If we had required sequential access
to profiled.foo, we could not have written this type of class. Since a user
can sequentialize access by making all of the public member functions of a class
atomic, CC++ does not require sequentialization as part of the language se-
mantics.

We note that atomic functions have the identical semantics to the Java
synchronized member functions. However, unlike atomic functions, which
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manage threads created by control structures in the language (i.e. par and
parfor statements), Java synchronized functions control threads created by a
separate Thread class library. i

3.4 Implementing a Blocking Lock

On of the features of CC++ is that its primitives can be used to implement a
range of different types of parallel programming paradigms. In this section, we
show how sync variables and atomic functions can be combined to implement
a parallel programming construct that is not part of CC++: a blocking lock. -
The lock is implemented as a CC++ class, and used as in:

Lock lock;

int i;

par {
{ lock.lock() ; i++ ; lock.unlock(); }
{ lock.lock() ; i++ ; lock.unlock(); }

}

The implementation of the lock contains a variable that records the lock’s
state. CC++ atomic functions are used to ensure that operations on a Lock
leave it in a consistent state. Because an attempt to obtain a lock that is already
held must suspend, the function that implements the lock request cannot be
made atomic. Otherwise, it would prevent the required unlock operation from
taking place, resulting in deadlock. Therefore, the function implementing the
lock request uses an -auxiliary function, which is made atomic. The unlock
operation, however, must atomically test the statg of the lock and either awaken
a blocked thread or reset the state of the lock to unlocked. -

The declaration for this Lock class is given in Program 3.3. Its interface
declares three functions. The use of the functions lock() and unlock() should
be clear. As discussed above, only unlock() is declared atomic. The class’s
constructor ensures that locks are always initially unlocked.

class Lock {

private :
enum lock_state {LOCKED, UNLOCKED};
lock_state state;
queue<sync int *> waitingQueue;
atomic check_lock();

public :
void lock();
atomic void unlock();

" Lock() { state = UNLOCKED; };

}

Program 3.3: Interface of CC++4 Lock Class
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The private part of the lock contains its implementation. It first declares
a private type, which is used to indicate the state of the lock, and a variable of
this type to hold its state. The variable waitingQueue is a queue of pointers
to sync integers, implementing using the queue class from the Standard Tem-
plate Library. Finally, we declare that a Lock has an atomic function called
check lock(), which is the auxiliary atomic function used by lock().

The member functions of Lock are given in Program 3.4. The lock() method
begins by allocating the sync variable got _1ock. This variable is used to indicate
when the lock is granted to this lock request. Note that got_lock is allocated
on the stack, so that its storage is automatically reclaimed when it goes out of -
scope at the termination of a lock() call. For this memory allocation strategy
to work, we need to ensure that there are no outstanding references to this
variable once the lock is granted—which is in fact the case in the Lock class.
After allocating got_lock, the atomic function check_lock() is then called with
a pointer to got_lock as its argument. On returning from check_lock(), we
examine the contents of got.lock. This blocks execution until got_lock has
been initialized, which indicates that this call to lock() has been granted the
lock.

The function check_lock() tests to see if the lock is already held. If so, the
pointer to the sync variable is pushed onto the waiting queue and check_lock()
returns. Otherwise, the state of the lock is set to LOCKED, the sync variable is
initialized, and check_lock() returns. Because check lock() is an atomic
function, CC++ ensures that interleaving will not change the state of the lock
between the time the state is checked and the time the pointer to got_lock is
enqueued. ) : ‘

«

T~
void Lock::lock(){
sync int got_lock;
check_lock(&got_lock) ;
// check if got'lock is initialized
got_lock == 1;

}

atomic void Lock::check_lock(sync int * go){
if (state == LOCKED)
waitingQueue.push(go);
else
*go = locked = LOCKED;
}

atomic Lock: :unlock(){
© if (waitingQueue.empty())
state = UNLOCKED;
else
// Grant lock to waiting request
*vwaitingQueue.pop() = 1;

13



Program 3.4: Implementation of Member Functions of Lock Class.
To release the lock, we must first check the waiting queue to see if any
threads are blocked. If so, we dequeue the pointer to the appropriate got_lock
and initialize it. This allows a blocked lock() call to proceed. If there are no
threads waiting for the lock, we simply change the state of the lock to UNLOCKED.

3.5 Specifying Location in CC++

So far, all of the CC++ constructs introduced deal with specifying when op-
erations can take place. The remaining CC++ constructs—processor objects
and global pointers—are used to specify where operations can execute. In addi-
tion to providing a mechanism for specifying locality, these constructs address
a number of additional design issues, including:

¢ a means of abstracting processing resources in the programming language;

e a mechanism for separating algorithmic concerns from resource allocation
issues;

¢ a means for describing heterogeneous computation; and

e a mechanism by which existing C++ codes can be properly composed
from within a parallel block.

4

All of these issues are addressed by the CC+¥ concept of a processor object.
In C++, a computation consists of a single instance of a program, which is
constructed by linking together one or more translation units, or files.'In CC++,
we generalize the idea of a computation to include multiple instances of more
than one program: that is, a computation can have many instances of the same
program, or many instances of different programs. We call each instance of a
program in a CC++ computation a processor object.

A processor object is defined by linking one or more translation units with a
global class declaration. Associating a class declaration with a program enables
CC++ to treat a C++ program as a regular C++ object. A processor object
has a type, and can contain member functions, data members, nested class and
type definitions, constructors, destructors, and so on. A processor object can
by dynamically created with the new operator and destroyed with the delete
operator. Program 3.5 shows that a global class definition looks like a regular

- class definition, except for the addition of the keyword global. As this file

defines two different global classes, it in effect declares two different types of
programs.

// file: global'defs. H
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global class ProgramA {
£0;
}

global class ProgramB {
public :
£0;
private :
gQ; -
}i

Program 3.5: Examples of Global Class Declarations

As with any class declaration, the global class declaration specifies the data
and function members of the class. The translation units or files that are linked
together can contain the implementation of these members. Processor object
definitions are created by the CC++ compiler at link time. For example, con-
sider the global class declarations in Program 3.5 and the source code in the file
listed in Program 3.6. Using the CC++ compiler developed under this project,
we type: -

cc++ —-o program_a -ptype ProgramA filel.cc++

to create a processor object of type ProgramA. The implementation of this pro-
cessor object is placed in the file program._a.

By executing a file containing the implementation of a processor object,
we can start a CC++ computation. Initially this computation contains a single
processor object whose type is that specified by tje ptype argument to the com-
piler. In our example, executing program_a would start a CC++ ¢omputation
that contained one processor object of type ProgramA

The first processor object in a computation is a special case. Once it has
been created, the member function

int main(int, char*x)

is run. Only the first processor object in a computation is required to have a
main function and the main function is only run in the initial processor object
in a computation.

// Contents of filel.cc++
#include "global_defs.H"
int main(int, char **) { --- }

Programd::f() { --- }

Program 3.6: Source code in filel.cc++.
Lets consider a more complicated example, shown in Program 3.7. We can
create a processor object definition from this file with the compiler command:
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cc++ -o program_ b -ptype ProgramB file2.cct++

Unlike the previous example, file2.cc++ contains a class declaration, A and
a global variable, x. These declarations receive special treatment when the
processor object definition is put together. The obvious thing to do is to simply
include these declarations as members of the global class. However, this would
make it difficult to integrate existing code and libraries into a CC++ program.
Even if one had access to all of the variables and classes in a existing program,
requiring a user to manually enter all of the declarations into the global class
declaration would be awkward.

// Contents of file2.cc++
#include "global_defs.H"
class A {};

ProgramB::f() { --- }
ProgramB::g() { h() }

int x;

L() { }

Program 3.7: Source code in file2.cc++.

Our solution to this problem is to consider all top-level declarations in a
translation unit to be implicitly included as private members of a processor
object. Thus in Prograth 3.7, the class A is a priygte, nested class in a processor
object of type ProgramB, while the variable x is a private data member of the
processor object. i

One remaining issue is what to do about objects with external linkage. For
example, consider the following class declaration:

class C {
static int data_member;

Normal C++ semantics say that the name data member refers to the same piece
of storage in every instance of class C. Extending these semantics to processor
objects would result in sharing memory between processor objects, which would
be contrary to our desire to use the processor object to specify locality. Accord-
ingly, we modify the linkage rules of C++ to state that externally-linked names
are resolved to the same object within an instance of a processor object, but
are treated as if there were internally linked between instances of a processor
object.
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3.5.1 Creating New Processor Objects

As we saw above, one way to create a processor object is to execute a file
containing the implementation of that processor object. ‘Additional processor
objects can be created through the use of the new operator.

If we have a global class definition:

global class worker {

public : -—
worker(); '
worker (int worker_id);
int do_work();
int status;

}
then the expression:

worker * global gPtr = new worker;

will create a new processor object of type worker and return a pointer to it. (We
explain the use of the keyword global in Section 3.5.3). In this example, the
default constructor for the processor object will be called. Note that creating a
new processor object does not create a new tliread of control.

As with any other CC++ object, members of a processor object can be ac-
cessed though a pointer to that object. Upon executing the variable declaration
shown above, the statements:

thr->status++;i .- .
wPtr->do_work();

will increment the value of status in the newly created worker processor object
and call the do_work function. :

We can combine C++ library-building constructs with processor objects and
parallel control structures to achieve speedup on a distributed memory machine.
Given the worker class above, we want to create a collection of workers, and
then call the do_work() function on each worker in parallel. We would also like
to hide the details of processor objects from the end user. An implementation
of this program is found in Program 3.8.

class worker_ptr {
public :
static init_workers(int n) {
workers = n;
for (int i=0; i<n; i++) worker_array[i]l = new worker;
}
worker global * operator->(){
return worker_array[next_worker = (next_worker + 1) Y% workers];
private -:
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static int next_worker;
static worker_array[MAX_WORKERS];

b

use_workers() {
worker_ptr::init_workers(128);
worker_ptr ptr;
parfor (int i=0; i<1024; i ++)
ptr->do_it(Q); -

Program 3.8: Using Processor Objects to Achieve Parallelism

The parallel computation is performed in the function use_workers. Be-
fore we can do any work, we must create the processor objects on which the
computation will take place by calling the static member function:

worker_ptr::init_worker()

This function creates processor objects of type worker and stores pointers to
them in the static private data member worker_array. In practice, we will want
each processor object to be located on a different physical processor; we show
how this can be achieved below. :

With the processor objects created, we are ready to perform a parallel com-
putation using the function use _workers(). After performing the initialization,
this function creates the variable ptr, which is of type worker_ptr. Within the
body of a parfor loop, we call the do_it() function using var as a pointer.
This expression calls the overloaded -> operatogin worker ptr, which returns
a pointer to a processor object. The exact processor object used depends on the
number of workers and the number of times the —> operator has been called.
Thus the class worker_ptr not only isolates use_workers() from the details of
processor objects but also provides a means to separate the mapping of compu-
tation onto processor objects from the body of the function as well. Using the
global pointer returned by the overloaded -> call, the function do_it () is then
called.

This example demonstrates a number of interesting aspects of CC++. It
shows how “where” constructs can be combined with “when” constructs to
create a parallel program. It also shows how CC++ constructs can be combined
with C++ constructs to encapsulate the mapping of computations to resources.
While computation was distributed to processor objects in a round-robin manner
in this example, more complex algorithms could be easily encapsulated in the
worker_ptr class.

3.5.2 Specifying the Placement of a Processor Object
As we have seen, processor objects provide a convenient abstraction for talking

about the distribution of computation in a CC++ program. We now discuss the

-
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method by which we can control the mapping of processor object onto physical
computing resources.

The C++ new operator actually calls a function new(size_t), where size_t
is an implementation-defined type. Additional argumerits can be passed to
an overloaded new by using the so-called placement syntax. For example, the
expression:

new (23) T

calls the function new(sizeof (T),23). Placement is typically used to force the
C++ runtime system to use a particular region of memory when allocating an -
object. o
When the type of the object being allocated is defined by a global class, a
function whose signature is new(proc_t) is called. proc_t is a regular C++
type defined by an implementation of CC++, just like size_t. However, where
a size_t specifies the size of an object, a proc_t specifies the location of an
object. If no placement argument is specified, the new function is called with
the same proc_t that was used to create the processor object on which the new
expression is being evaluated. Otherwise, the proc_t provided via the placement
argument is passed as the first argument to the new function. ~

Returning to class worker, we can specify that the allocated processor ob-
jects be located on node 34 of a parallel computer named bigboy with the
following code:

// Include definition of proc_t
#include <stddef.h>

// Create a proc_t that specifies node 84 on bigboy. g
proc_t where("bigboy#34");

// Create an instance of worker on a specific node
// Pass an argument of 10 to the constructor
worker * global gPtr = new (where) worker(10);

3.5.3 Global Pointers

In Section 3.5.1, we saw that the type of the pointer returned from a processor
object allocation had the type specifier global. In CC++, a pointer that is
used to reference between processor objects must have this type specifier in its
declaration. We refer to such a pointer as a global pointer. Declarations of
global pointers look just like declarations of constant pointers. For example:

// global pointer to an int
int * global pi;

// global pointer to a sync int
sync int * global pi;
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// constant global pointer to a pointer to a sync int
sync int * * const global pi;

Global pointers give CC++ an explicit two-level locality model: objects are
either close and inexpensive to reference, or (potentially) far away and expensive
to reference. Note that just because a pointer is global, it does not mean that
it will be costly to get to the data it references, just that it may be.

We can have a global pointer to any C++ object. There is an implicit
conversion from a local pointer to a type to a global pointer to that type. Thus:

int x;

int * global iPtr = &x;

produces a global pointer to the variable x.

3.5.4 Moving Data Between Processor Objects

The final aspect of CC-++ to be explained is how data is moved between proces-
sor objects. This happens whenever an operation takes place through a global
pointer. For example, the following statements all have to copy data from one
processor object to another:

class A;
class C {
// A function with a class as its argument and return value
C foo(A);
I
4
A a; I

C * global cPtr;
int * global gPtr;
int x;

copy an integer between processor objects
x = *gPtr;
*gPtr = x;

// Copy instance of classes A and C between processor objects
C retvalue = cPtr->foo(a);

Transferring data from one processor object to another is similar to the
problem of generating copy constructors for a data type. The solution used
to generate copy constructor is to perform member-wise copies, where built-in
types are copied bitwise. This method generate a sensible copy operation as
long as the data type being copied does not contain a pointer.

The CC++ compiler does the same thing to move data between processor
objects. To move data between processor objects, the data must first be packed
into an architecture neutral format. Conceptually, the packed data does not live

—-—
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on any processor, but rather in a “space” that exists between processor objects;
we call this-space the void. Data transfer consists of inserting data into the
void from the source processor object and extracting data out of the void on
the destination processor object. To enable this process, the compiler generates
a pair of functions: an into-the-void function and a out-of-the-void function.
The compiler automatically generates void functions by calling the appropriate
void function on the members of the data structure.

In the situation where this is not the desired behavior, the user can specify
a void function. For a type T, the void functions have the following signatures:

global void & operator << (global void & v, const T & data);
global void & operator >> (global void & v, T & data);

Typically, one must define a pair of void functions in the same circumstances
where one has to define a copy constructor and assignment operator.

4 A Programming Example: Polygon Overlay

To demonstrate the use of CC++ to support different parallel programming
examples, we consider a complete sample program. Two different parallel im-
plementations will be given. The first is designed specifically for shared memory
parallel computers. From this version, we will create a version of the program
that can execute on distributed memory parallel computers.

The example that we consider is the polygon overlay problem, in which one
computes the geometric intersection of two mput maps each of which defines an
alternative decomposxtxon of a geometric spacé 4ato non-overlapplng polygons.
The basic algorithm for computing the overlay for each polygon in the first map,
compare its coordinates with every polygon in the second map, corparing the
coordinates of the two polygons and creating a new polygon representing the
- overlap, if any. Optimizations of the basic algorithm include sorting the second
polygon list to reduce the number of elements that must be checked and keeping
track of the overlap area in the polygons of the second list so that a polygon
can be permanently taken out of consideration if it is completely covered.

We started with an existing implementation of polygon overlay, written in
ANSI C. Our approach to producing a parallel program is to make incremental
changes, preserving as much of the original program as possible. The first step
in this process is to ensure that the existing C code can be parsed as C++. Since
the program is ANSI C, and since CC++- is a superset of C++, we were able to
compile the sequential polygon overlay code with the CC++4 compiler without
change. With this done, we can modify the program to introduce parallelism.
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4.1 A Shared Memory Implementation of Polygon Over-
lay

The main computational kernel of the polygon overlay algorithm is shown in
Program 4.1. The doubly nested loop checks every element in the first (left)
map against every element in the second (right) map. Overlay regions are stored
in a linked list, whose head is pointed to by the variable outList.

// pl and pr point to elements in the left and right map
for (il=0, pl=left->vec; il<left->len; il++, pl++) {
for (ir=0, pr=right->vec; ir<right->len; ir++, pr++) {
// polyOverlayLn allocates new list cell when overlap exists
if ((newLn = polyOverlayLn(pl, pr)) != NULL) {
newLn->link = outList;
outList = newLn;

}
}
}

Program 4.1: Kernel Operations in polygon overlay application

An obvious way to construct a parallel version of this application would be
to replace the two for loops with CC+-+ parfor loops, modifying the body of
the inner loop to ensure that concurrent updates to the output list are handled
correctly. However, there is a performance problem with this solution that must
be considered. Ideally one would like to use a parallel block,or loop structure
whenever parallel execution is possible. Howevgr, in practice, there is a cost
associated with creating a new thread of control on most curreiit computer
architectures 2. Consequently, simply replacing the for statements with parfor
statements will result in an unacceptable level of overhead.

The solution to this problem is to introduce a limited amount of parallelism
by adding a single parfor loop around the existing sequential loops. The parallel
loop slices the first map into a fixed number of sections, where calculations on
the sections can execute in parallel. Within a section, the for loops compute
the overlays sequentially.

We now turn to the problem of updating the output list. There are two ba-
sic methods by which concurrent updates to the output list can be made. One
approach is to introduce a list class that supports atomic operations. However,
requiring atomic update for every list modification can be costly. Consequently,
our approach is to batch updates into a local output list and the to atomi-
cally append the local lists together to form the overall solution. Here is an
implementation of the append operation:

// Atomically append list 12 to list 1.

2There are a class of multi-threaded computer architectures in which thread creation is
inexpensive, however, these computers are not yet widely used
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atomic atomic_append(PolyLn_p 11, PolyLn_p 12) {
PolyLn_p end_ptr = 11;
// Find the end of the first list.
while(end_ptr->link != NULL) end_ptr = end_ptr->link;
end_ptr->link = 12;

Putting everything together, Program 4.2 shows all of the changes required
for a shared memory implementation of the polygon overlay application=The
variable parallelism controls how many overlay computations will be taking _
place concurrently. Each iteration of the parfor statement creates a local out-
put list which it then appends into the list, outList to construct the final
solution.

// Compute overlay on left map slices in parallel
parfor (n = 0 ; n < parallelism ; n++) {
// List to store local overlay computation
PolyLn_p local_outlist = NULL;
for (il=n, pl=left->vec;
il<left->len;
il += parallelism, pl += parallelism) {
for (ir=0, pr=right->vec; ir<right->lemn; ir++, pr++) {
if ((newLn = polyOverlayLn(pl, pr)) != NULL) {
newLn->1link = local_outList;
local_outList = newlLn;

} L
Yy X ‘

// Add local overlays to global list
atomic_append(outList,local_outList);

Program 4.2: Shared memory kernel for polygon overlay application

4.2 A Distributed Memory Implementation of Polygon
Overlay

In the shared memory implementation of polygon overlay using CC++, we
created multiple threads of control in a single processor object. To construct
version of this program that can execute on distributed memory computers, we
must create more than one processor object. In the shared memory polygon
overlay program, parallelism is introduced by slicing the first map into sections
and processing the sections in parallel. The same approach is used to introduce
parallelism in the distributed memory version as well. However, in the shared

‘memory code, the sections of the first map are implicitly defined by the parfor
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loop. In the distributed memory version, the slicing is explicit as each section
must be placed into a different processor object.

Notice that using more than one processor object does not prevent us from
having more than one thread of control in the processor object. The shared
memory and distributed memory versions of the polygon overlay code can be
easily combined into a single application that exploits both types of parallelism.
This would be appropriate for execution environments that support both shared
and distributed memory programming models. Examples include parallel.com-
puters with multi-processor nodes, such as the Intel Paragon MP, or networks
of multiprocessor workstations. ‘

The top level of the distributed polygon overlay code is shown in Pro-
gram 4.3. To simplify the development of this code, we use components from
the standard CC++ library. This library is written completely in CC++ and
contains reusable components that implement a variety useful parallel program-
ming paradigms and abstractions. The declaration of class polyoverlay array
uses the CC++ library to define a processor object array, a homogeneous col-
lection of processor objects. Each element of the polyoverlay array contains
an reference to an instance of class polyOver as well as references to the other
elements of the array. Another class defined in the library is the locations
class, which is just an array of proc_t objects. A locations object can be
used when a processor object array is created to specify where the elements of
a processor object array are over nodes of a computer.

class polyOver { _

public: . ‘ v ‘
// Interface to sequential polygon overlay comiputation
polyVec_p doOverlay(polyVec_p left,polyVec_p right);

}i &

// Declare a array of processor objects whose

// elements are of type polyOver

global class polyoverlay_array {
// Make this class a processor object array
declare2(pobj_array,polyoverlay_array,polyOver)

public:
// Initialize processor object array
polyobj_array_test(locations locs, const int sz) :

array_components(locs, sz,this) {}

polyVec_p doOverlay(polyVec_p, polyVec_p);

|5

int main(int argc,char **argv)

{

polyVec_p leftVec, rightVec;

int nodes = atoi(argv(1]);
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// Read data from map files.
leftVec = polyVecRdFmt(argv(2]);
rightVec = polyVecRdFmt (argv(3]);

// Create processor objects
polyoverlay_array array(nodes);
polyVec_t outVec = polyover_array.doOverlay(leftVec, rightVec);

// This sort could be parallelized as well -
gsort((void *)outVec.vec, outVec.len, sizeof (poly.t), polyCmp);

// Write out the result
polyVecWrFmt (argv[4], &resultpolyVec);
return O;

Program 4.3: Top level code for distributed memory implementation
of polygon overlay application

When the distributed polygon overlay application is started, the number
of nodes to use, the file names for the input maps and the output file are
passed as arguments. The data from the map files is read and the contents
stored into the vectors: leftVec and rightVec. We then create and instance of
the processor object array polyoverlay.array, which creates nodes processor
objects. We call the member function doOverlay, which returns the a polygon
vector containing the'results. After sorting the results, we cap output them to
a file. ‘-

The member function polyoverlay.array::doOverlay is responsible for
performing the parallel computation. Conceptually its implementation is quite
simple. It iterates in parallel over the elements of the array, calling the function
polyOver: :doOverlay. This function returns the the overlay of the polygon
vectors passed in as arguments as a polygon vector. The first argument to
polyQver: :doOverlay contains the slice of the first map to be processed by the
processor object, while the second argument contains the entire second map.
The calls polyOver: :doOverlay are made through global pointers created by
the constructor for the processor object array. Thus into and out of the void
functions are used to transfer the polygon vectors between processor objects.
While these must be defined as part of the parallel implementation of the parallel
polygon overlay code, they are easy to construct as the polygon vector consists
of a vector length and a vector of integers.

The implementation polyOver: :doOverlay contains the computational ker-
nel from Program 4.1. As we mentioned previously, we could just as well use
the version from Program 4.2, allowing our code to exploit both shared and dis-
tributed memory. With the exception of one minor modification, we use the se-
quential polygon overlay implementation unchanged. The alteration to the basic
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polygon overlay algorithm improves the performance of polyOver: :doOverlay
when processing the first map in slices. The input polygon vectors are sorted
by the x coordinate of the left-hand side of the polygons in the vector. Since the
first argument to each instantiation of polyQOver: :doOverlay only has a slice
of the entire map, it does not cover entire region. If we determine the range of
the z values covered by the vector slice of the first map, an initial portion of
the second map can immediately be eliminated from consideration in overlap
computations. This optimization is implemented by polyOver: :do0Overlay.
Performance results from the distributed memory version of the polygon
overlay code shown in Table 1. These runs were made on an IBM SP 2. Bach
node has 128 Mbytes of memory.

[ Node [[ Sequential [ 2[4 [8]16]32 ]
Time
Speedup 1 2141816 32

Table 1: Performance results of distributed polygon overlay code on an IBM
SP-2

5 Implementing CC++4

Much of the woik completed during this project was to produce an robust
CC++ compiler, capable of enabling applicatiolf development. The structure
of the compilation environment is shown in Figure 1. The CC++ compiler is
implemented via a source to source transformation. CC++ code is parsed and
transformed into ANSI C++, with calls to a CC++ specific runtime library.
The resulting code is then compiled by the vendor supplied C++ compiler and
linked with the CC++ runtime library to generate an executable. A top level
driver script hides the details of this process from the end user, allowing them
to invoke the CC++ compiler just like any other compiler on the target system.

Structuring the CC++ compiler as a CC++ to C++ transformation has
several advantages. First, it simplifies the process of porting and maintaining
the compiler, as architectural specific dependencies are minimized. In addition,
the use of the vendor supplied C++ compiler for code generation can simplify
porting existing applications to CC++. Within the C++ standard, there are
a number of behaviors that are implementation specific. For example, exam-
ple, the lifetime of temporary variables generated by the compiler can vary
from implementation to implementation. While it is not good programming
style to depend on these implementation dependencies, it is desirable that a
working C++ program continues to function correctly when compiled by the
CC+4-compiler. By relying on the vendor compiler for code generation, we can

—
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Figure 1: Structure of the Compositional C++ compiler

ensure that the behavior of existing C++ code will be unchanged when passed
through the CC++ compiler. '
One disadvantage of using source to source compilation to implement the
CC++ compiler is that there are some optimizations that can be performed
| when generating object code, but cannot be expressed in the generated C++
| code. For example, the semantics of thread creation, variable sharing and thread
synchronization could be exploited during the code generation lstage to optimize
| memory allocation and register usage. However, we believe that these limita-
| tions of our approach are far outweighed by the advantages discussed above.
In the following sections, we will discuss the details of the compiler as im-
plemented under this contract. This will include the parser, a source to source
transformation tool that we developed, the compiler transformations, and the
| CC++ runtime library. -

| 5.1 Parsing CC++

The goal of the parsing stage of the compiler is to process the textual representa-
tion of a program an to produce a set of data structures that can be manipulated
by later stages of the compiler. ANSI C++, and hence CC++, is a large and
complicated language. Tokenizing is complex and often context dependent and
the language is best parsed by a hand crafted recursive decent parser, rather
then by automatically generated parsers such as those produced by tools like
YACC. The situation is further complicated by the need to handle the instan-
tiation of C++ templates, which require handling of partial type information
and introduce the need for link time instantiation of missing templates. Because
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CC++ extensions were designed to be minimal and consistent with the design
of the rest of C++, our approach to parsing was to extend an existing C++
parser to accept CC++ syntax, rather then create a CC++ parser from scratch,
given the complexities described above.

We selected a C++ parser developed by the Edison Design Group (EDG)
the basis of our CC++ parser. We made this choice for several reasons:

o It was a high-quality implementation and served as the front end for many
commercial C++ compilers.

e The parser was actively tracking the developments in the ANSI C++
standardization committee,

¢ academic institutions could get access to source code for no fee, and we
could freely redistribute binary copies of the parser.

The parser consists of over 250,000 lines of C source code. We made mod-
ifications to the tokenizer, parsing routines, and symbol table routines, among
others, to support the the CC++ language extensions. We also modified the
template mechanisms so that CC++ extensions were smoothly integrated into
the process of template instantiation. In performing these modifications, partic-
ular attention was paid to ensuring the accurate and meaningful error messages
were produced by the parser when parsing CC++ code.

As provided by EDG, the compiler could be configured with a range of back-
end processes. We augmented the compiler with a back end of our own design
to produce a Sage V2.0 intermediate form (described below) and to perform the
CC++ specific transformations that implement the actual compilation process.

5.2 Representation of Parsed C++ and CC++ Programs

As provided by EDG, the parser represents a C+-+(or CC++) program file as a
collection of symbol tables and a set of C data structures. While the EDG devel-
oped representation provided a complete representation of the parsed program,
its format was complex and difficult to manipulate. As part of our goals for
this contract, we wanted to develop general compilation infrastructure for the
C++ research community. Consequently, we undertook to develop a program
representation that was easier to use and specifically designed to support the
development of source to source transformations. The results was a tool called
Sage V2.0, which provides an object-oriented representation of a C++ program
and a set of operations that facilitate the expression of program transforma-
tions. Sage V2.0 was developed in collaboration Indiana University, as part of
their DARPA funded HPC++ project.

Sage V2.0 is implemented as a C++ class library. Objects in this library
represent program object such as statements, variables, expressions, etc. In
order to simplify the process of designing transformations, Sage representations
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were designed to be as high level as possible, ideally a direct encoding of the
literal program structure. We note that there are situations where this is not
possible, as such a representation will hide important details about the structure
of the program. However, in general, we were able to design representations that
were much simpler than those used internally by the EDG parser.

To support source to source transformation, the Sage V2.0 library provides
a set of iterators for looping over program functions, statements'and elements
of expressions. Use of these iterators is simplified by structuring them taJdook
like the iterators defined in the ANSI standard template library. Each class also
provides an unparse function, which is used to convert the Sage representation
into an text file, suitable for input to a backend C++ compiler.

Program 5.1 illustrates the use of Sage 2.0 in a simple transformation found
in the CC++ compiler: reading the value of a variable declared to be of type
sync. As we will discuss below, the CC++ compiler iterates over the statements
and expressions in a CC++ program. During this iteration, it looks for variable
with the type modifier sync and converts them to be instances of a correspond-
ing C++ class. For example, sync int variables are converted to be of type
SyncInt. This class has a member function called value which blocks until the
variable has been assigned a value, and returns that value once it exists. The
sync variable transformation therefore is to transform a code such as:

sync int x;
int y;
y = x + 23;

into
class SyncInt; // defined in cc++ runtime library

SyncInt x;

int y;

// this will block until x is set
y = x.value() + 23;

To perform this transformation, the CC++ compiler iterates over all of the ex-
pressions in a program looking for a reference to a variable with the sync type
modifier. For each such variable, the compiler will call the function addDotValue,
shown in Program 5.1. This function looks up the declaration of the .value
member function in the SyncInt class and creates a new expression to replace
the variable reference.

// Transformation for reading a cc++ sync variable. To

7/ ensure correct synchronization each variable is represented
// as an class, with a value() member function that blocks until
// the variable has been assigned a value.

SgExpression *applyCheckSync: :addDotValue(
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SgType* n,
SgType *t,
SgExpression *e

SgExpression *new_expr;

// Underlying type is sync, but may be a references, so
// skip over the reference part of variable if this is the case =
SgType *tmp_n=n;
if (tmp_n->variant ()==T_MODIFIER)
tmp_n=((SgModifierType *)tmp_n)->get_base_type();

SgClassDeclaration *tmp_decl=
(SgClassDeclaration *)(isSgClassType(tmp_n)->get_declaration());

// Lookup the declaration of the value member function

// associated with the declaration of sync classes.

SgMemberFunctionSymbol *fsym=0;

SgName nm=TRAN_STRING: :value; -

fsym=(SgMemberFunctionSymbol *)
(tmp_decl->get_definition()->lookup_function_symbol(nm));

// Get line number information for variable.
Sg_File_Info *finfo=e->get_file_info();

// Create a value function call ¢
SgMemberFunctionRefExp *fref=new SgMemberﬁunctionRefExp(finfo,fsym);

// Create the actual member function call: mn.value() -
SgDotExp *dotexpr=new SgDotExp(finfo,e,fref);
SgFunctionCallExp *fcall=new SgFunctionCallExp(finfo,dotexpr);

// Convert function call to a generic expression
SgCastExp *fcast=new SgCastExp(finfo,fcall,t,0);

return fcast;

" Program 5.1: Sage 2.0 Transformation for Sync Variables

5.3 Source to Source Transformations

In this section, we provide a brief overview of the transformation process used
by the CC++ compiler to convert a CC++ program to a form that is accept-
able to an unmodified C++ compiler. The result of the transformation process
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is a ANSI C++ program, with references to a CC++ class library, which pro-
vides base classes that implement basic functionality for sync variables, global
pointers and atomic functions. The class library is in turn built on top of an
underlying runtime system. We have used the Globus Grid Toolkit [FK97] as
our runtime environment.

The transformations are decomposed into two passes over the Sage 2.0 pro-
gram structure. During the first pass, global classes are recorded and their
type converted to a regular C++ class. In addition, variable declarationswith
the sync modifier are converted to a declarations of a corresponding Sync class
that supports the synchronization operations. We then examine all expressions
in the file, turning read operations on sync variables into explicit calls to the
value member function, as described above.

The second pass performs a range of transformations on classes, statements,
declarations and expressions. The following is an incomplete list of some of
the transformations performed during the second transformation pass by the
compiler:

e Class based transformations. If the function has any atomic functions,
a special atomic virtual base class is added. This class énsures that one
lock is shared across all atomic functions called on an instance of the
class. Access to a class via a global pointer is supported by the addition
of a number of entry functions which provides an interface to a remote
procedure call provided by the underlying runtime library. One entry
function is added for each member function of the class as well as an
entry function to enable remote reading and writing of data members.
The compiler also adds additional membes functions to facilitate access
to private members from a parallel block. '

e Declaration based transformations. All global pointer declarations are
converted to be a single generic global pointer type. The atomic keyword
is stripped from function declarations and a variable whose constructor
calls a lock function in the atomic base class is added to the beginning of
atomic function definitions.

e Statement based transformations. Library based thread creation functions
typically require a pointer to a regular C function. The CC++ compiler
must extract each statement from a parallel block or loop and encapsulate
it as a static member function of a class, or a global function. In addition,
detection of termination of parallel blocks must be added using a barrier
defined in the CC++ runtime library.

e Expression based transformations. The compiler transforms expressions
involving global pointers into a sequence of buffer packing operations (e.g.
argument marshalling) and remote procedure calls. The compiler gener-
ates specialized protocols depending on if a function call is synchronous,
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or asynchronous and if the call has a return value. Expressions causing
processor object creation and deletion (i.e. new and delete operators of
global classes) are converted into a sequence of resource management
operations that create a process running the executable for the proces-
sor object on a remote computing resource. In addition, processor object
references (i.e. ::this expressions) are removed and replaced with refer-
ences to a static variable which contains a pointer to a local instance of
the current processor object. -—

5.4 The Runtime Environment for CC+-

Recent trends in high-performance networking are resulting in an significantly
increased availability of high-bandwidth network connections. With these ad-
vances in networking infrastructure, it is now possible to construct large-scale
distributed computing environments, or “computational grids” as they are some-
times termed [FK98]. Computational grids provide an application with pre-
dictable, consistent and uniform access to a wide range of remote resources,
including compute resources, data-repositories, scientific instruments, and ad-
vanced display devices. This access makes it possible to construct whole new
classes of applications, such as supercomputer enhanced instruments, desktop
supercomputing, tele-immersive environments, and distributed supercomput-
ing {CS92].

In a separate DARPA funded project, we have been investigating the concept
of computational grids, and have developed a runtime infrastructure, called
Globus, to support development of computational grid applications. Globus
consists of a toolkit which provides basic Grid services, including:

e mechanisms for thread creation,

e thread synchronization primitives,

e communication mechanisms, and

e security

e resource management, i.e. remote process creation and control.

We have constructed the CC++ compiler to target the Globus grid toolkit
for runtime support. In doing so, we enable CC++ programs to execute not
only on parallel computers, but in distributed Grid environments as well.

One of the more interesting uses of Globus in the CC++ runtime library
it the use of the Globus Resource Allocation Manager [CFK*98] (GRAM), to
support processor object creation. GRAM provides a uniform interface to a
wide range of local resource management services, such as LoadLeveler, PBS,
NQE, and LSF. The GRAM API’s take a standardized resource description,
authenticate to the remote resource, allocate processors on that resource, and
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initiate the execution of the specified program on those processors. In addition,
GRAM supports automatic remote staging of the application binary on the
remote resource. )

The CC++ compiler generates a separate executable for each processor ob-
ject and uses calls to GRAM to start the execution of the processor object on
a remote resource. As described above, a proc_t object is provided as an ar-
gument to a new of a global class to specify what computer should be used
to execute the processor object. The CC++ compiler converts the information
in the proc_t structure to a Globus resource specification and then issues a
GRAM call to allocate the requested resources. Because GRAM handles all -
local resource management and security issues, the amount of code that must
be generated by the compiler is minimized.

6 Application Demonstration

To illustrate the power of CC++ as a Grid programming language, we developed
a application of interest to DoD, in collaboration with colleges at the Aerospace
Corporation. This application, called NEPH, enables near real-time detection
of clouds from satellite imagery.

The purpose of this application is to process two-dimensional infrared and
visible light images from on-board satellite sensors, such as DMSP, and locate
the position and elevation of clouds from these images. The steps in this pro-
cessing include:

e geo-locate the ifﬁages by assigning a latitude and longitude value to each
pixel, ~

e correct infrared data for previously known temperature climatology de-
pending on geography type (land, water, desert, etc.), time of day and
time of year,

e correct Visible light data for previously known background brightness ac-
cording to geography type, time of day and time of year,

e Use the corrected data and other historical data is used to determine
thresholds in visible and infrared channels to decide if a pixel is clear,
partially cloudy or completely cloudy

e Apply the thresholds to the images to produce a cloud map. Use the
infrared values to produce a elevation map. Combine these two maps to
produce a three dimensional representation of cloud location.

Figure 2 shows a three dimensional visualization of the output produced by this
application. Red indicates cloudy pixels detected only in the infrared image.
Green indicates cloudy pixels detected only in the visible light image. White
and gray indicate agreement.
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Figure 2: Stereoscopic view over top of hurricane towards Baja California and
Mexico. Vertical scale is exaggerated. .

To simplify the design of this application, it was coded in CC++. The
application consists of three different types of processor objects: an input object,
a cloud detector object and a visualization object. The cloud data is stored on
a workstation machine which has direct access to the downlink data from the
satellite. The cloud detection process is compute intensive, and is best done on
a parallel machine. Finally, the visualization component needs to be located on
the machine that the end user is seated at, which is more then likely not the
parallel machine. Because of its need for distributed heterogeneous resources,
NEPH is an example of a Grid application.

By coding NEPH in CC++ we were able to dramatically simplify the coding
process. The program is started from the visualization console. The program
creates processor objects on the machine on which the the image data is located,
and a collection of cloud detector processor objects on a parallel machine. Com-
munication between processor objects is performed via global pointer operations.
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The multithreading capabilities of CC++ are used to simultaneously integrate
processed data from a cloud detector and visualize the results.

Because CC++ is built on the widely deployed Globus infrastructure, the
user of NEPH authenticates once to the Grid environment and then Globus
provides strong authentication to all of the resources used by the application.
Globus hides the complexity of the fact that different communication protocols
may be used between nodes in a parallel machine and between separate comput-
ers, thus simplifying the task of configuration. Finally, because Globus pravides
a uniform interface to the different local resource management tools that may
be running on a parallel platform, the application as a great deal of ﬁex1b1hty )
in the selection of resources used to run the cloud detectors.

7 Summary

In this report, we summarized the results of our efforts in developing a unified
approach to supporting parallel programming in C++. The.central accomplish-
ment of this project has been to develop a robust implementation of the CC++
language. As part of this process we have also developed basic infrastructure
that can be used for developing a range of programming tools for C++. The
utility of the CC++ compiler has been demonstrated on a number of applica-
tions. As part of this project, we have developed a general tool for source to
source transformations on C++ programs. This tool has been used for a range of
applications, including CORBA IDL compilers and performance measurement
and visualization tools.

Our CC++ compiler generates calls to the Glebus Grid toolklt By choosing
this as are target execution environment, we have been able to track the latest
developments in Computational Grid environments. Consequently, we have
demonstrated the use of our CC++ compiler on high-performance distributed
applications as well as more traditional parallel applications.
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